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1 Lorentz invariance and causality

In chapter 5 of The Quantum Theory of Fields, Weinberg shows that in order for
fields to respond as

(L a)z/zg( ZD@/ ZZJ@/ LLE + a) (1)

under a Lorentz transformation L followed by a translation a, and also to either com-
mute or anticommute at spacelike separations (causality), the fields must use spinors
or polarization vectors of specific forms. These forms are so specific, that Weinberg
derives the Dirac equation from them. His treatment is the gold standard, but it
is long and complicated. In my iron-standard treatment, I will use the Dirac equa-
tion to derive the spinors for arbitrary momentum from Weinberg’s zero-momentum
spinors.

In Schwartz’s metric, if ¢,(x) is any four-component field that obeys the Klein-
Gordon equation

(0,0" +m?) ¢po(z) =0, (2)
then the field (example (6.10) of Physical Mathematics)
Ya(x) = (107" + m>ab ou() (3)
obeys Dirac’s equation
(107" —m)Y(x) = 0. (4)

We expand a spin-one-half field as

o) = [ 2

Z P w(p, s)bY(p, 5)e™ ] ()
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Since the Lorentz-invariant phase factor exp(—ipx) obeys the Klein-Gordon equa-
tion, any spinor of the form

ipx

u = (i7" +m)uge " = (pA* +m) ug e~ (6)

obeys Dirac’s equation. So if the gamma matrices are

01 0 ¢
0__ - 5 o _ - 0.1.2.3
7—(1 0), 7—(_5 0)’ Y = =iy Y (7)
then the momentum-space spinors for particles are
m po

u(p,s) = (P +m) uols) = (pg m> to(s) (®)

in which
po=p"—p-3, ps=p'+7-7. (9)

For p'= 0, we have

u(0.5) = () wofs) = (0 ) ) (10)

In general, ug(s) is

SO

wo-()(Om(E)

That is, only the sum & + ¢ matters, so we put £ = ( and set

w(0,s) = v/m (Z%) . (13)

The lower 2-spinor must be the same as the upper 2-spinor. Weinberg’s choice is

a<+)=((1)) and a(—):(?). (14)

S = O =

0
and (0, -) = v | (15)
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For arbitrary p, the spin-up spinor for particles is

1
u(p,+) = 1 (m pcr) (oz(+))_ 1 (m pa) 0
’ 2(E+m) \po m) \a(+) 2(E+m)\pc m) |1
0
1
B 1 < m E—ﬁ-&) 0
N 2(E+m) E—Fﬁ& m 1
! | (16)
m 0 E—ps —p1+ipe 1
B 1 0 m —p1—ips  E+ps 0
o 2(E +m) E+ps p1—ip m 0 1
p1t+ip2 E —p3 0 m 0
m+ E — ps
1t —p—ip
- V2(E+m) | m+E+ps
1+ P2

In the massless limit, the spinor for a particle with spin up and momentum p =
(»,0,0,p) is

0 0
1 0 0

u(p,+) = A 28] =Y 2B | (17)
0 0

which shows that only the right-handed particle, the lower two components, can have
spin and momentum in the 2 direction.
The spin-down spinor is

0.9 = s (5o ) (40) = o (oo )

We usually don’t need to know all four components of the spinors, but just in case

—_— O = O
—~
—_
oo
S~—



the spin-down spinor is

m 0 E—p3 —p1+ip2 0
u(p,—) = 1 0 m —p1—11p2  E+p3 1
’ 2E+m) | E+ps p1—ip m 0 0
p1+ips E—p;3 0 m 1 (19)
—p1+ipa
B 1 m+ E + p;3
20E+m) | P1—ip2
E—p3s+m

In the massless limit, the spinor for a particle with spin down and momentum p =
(p.0,0,p) is

0 0
1 2K 1

u(p,—) = BElo |7V 2E | (20)
0 0

which shows that only the left-handed particle, the upper two components, can have
spin in the —Z direction and momentum in the Z direction.
For antiparticles, any spinor like

v= (100" +m)vo e = (=pA* +m)vg e (21)

obeys Dirac’s equation. So the momentum-space spinors for antiparticles are

v@Ls)::(_pu7u+-noqm(s)::(_Z;_ 7Zo>zmgg, (22)

For p'= 0, we have

Qm@:@mw+m%@:(m ”ﬁ%@. (23)

—m m

(o) = (¢). (24)

(5 DO e

In general, vg(s) is

SO



That is, only the difference & — ( matters, so we may set

w(0.5) = v (). (2)

The lower 2-spinor must be the negative of the upper 2-spinor. Weinberg’s choice is

o= (1) mase-(3)). @)

So the p'= 0 spinors for antiparticles are

0
v(0,+) =vm (1) and  v(0,—) =+vm (1J : (28)
0

—1

For arbitrary p, the spin-up spinor for antiparticles is

0
o(p,+) = 1 ( m —pa) ( B(+) ) _ 1 ( m —pa) 1
’ 20E+m) \—ps m J\=B(+)) 2E+m)\—po m 0
-1
0
B 1 ( m —E+p 5) 1
S Erm \~E-7-3  m 0
-1
(29)
Doing the matrix multiplication, we get
m 0 —F +p3 p1— ipg 0
1 0 m p1+ips —E—p; 1
v(p,+) = ————— .
7. +) 20E+m) | —E—ps —p1tip m 0 0
—p1+1p2
20E+m) | —pPLtip
ps—E—m



In the massless limit, the antiparticle spinor for p = (0,0, 0, p) and spin up is

0
V2FE
vt = o |- (31)
0
The antiparticle spinor for spin-down is
-1
1 m  —po\ [ B(-) 1 m  —po\) | 0
vp,—) = ——— | _ - —B8(2)) T Ao \—p5 1
2(E+m) \—po m B(=) 2(E+m) \—po m
0
-1
B 1 ( m —E+7p- 5) 0
2E+m) \—E—-p-0 m 1
0
m 0 —E+ps p1—ipe —1
_ 1 0 m prtips —E—ps| [ 0
2E+m) | —E—ps —p1+ip m 0 1
—p1—ipy —FE+p3 0 m 0
P3s — E—-—m
_ 1 p1+ip2
20E+m) | E+ps+m
p1+ip2
(32)
In the massless limit, the antiparticle spinor for p = (0, 0,0, p) and spin down is
0
0= | g (33)
v p7 - 2E
0
More succinctly, the spinors for particles and antiparticles are
m+p  [o(+) 1 m po\ (a(f)
ulpt)= (N - (™ :
2(E +m) \o(£) 2(E +m) \po m) \a(+) (34)

v(p, £) = % <_65(a)) = ﬁ (—n;& —WZZU) (—55(29
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with

() = % G i D and  B(+) = +a(F). (35)

Their inner products are, since Y#170 = 40~#,

u(p, s)u(p, s') = ul(p, s)7°u(p, s')

1 0 a(s’)
2E T m) (aT(s) aT(s)) (m -+ pT) v (m+ p) (a(s’))

B 1 0 a(s) (36)
= 2@y @) )2 (m ) (m+p) (a(sf))

_ 1 0(, 2 2y [(s')
— 2E ) (aT(s) aT(s)) ¥ (m +2mp + p ) (a(s’)) .

Now p* = p> =m? , and the 7% term is

e a'@) (3 6) (o ) (00) = @ @@ (5 ) (6)

= a'(s) (p7 + po) a(s') = al(s)2Ea(s).

So these inner products are

u(p, s)u(p,s’) = al(s) (4m® + 4mE) a(s') = 2m b, . (38)

2(E +m)

The usual inner product is

a(s)
2 ) (af(s) al(s)) (m+p") (m+p) <a(s’))

= (al(s) al(s)) (m+ EA°+5-7) (m+ Ey° — - 7) (Zg)

ul (p, s)u(p, s') =

_ (al(s) al(s)) [(m+ Bq")* + (5)’] (agg)

= 5 (af(s) af(s)) (2275; 2277;?) (Zg%

N
|
O
&5
(o9
\.CID
cn\



Once again, the spinors are

(40)
__m- B(+)
v, £) = %E+wn)<—ﬂuﬂ)
with .
cmﬂ:§<ii3 and  B() = + a(T). (41)
Since 7149 = ~%4# the spin sum of the outer products of the particle spinors is
St 1009 = s o+ | 2 (062 (01680 o) | ()
(42)

The inner spin sum is

St )it s) = g (e ) (11) (1 2)

— 1 m  po m-+poc m4+ps\ o
_2(E+m) (pcr m) (m+pg m+pg>7
(m + po)? (m—+po)(m+pa)\ o
2(E +m) ((m +pa)(m + po) (m + p)? ) 7 (4d)
2(E+m)ps 2m(E+m)\
(Qm(E +m) 2(E+ m)pa) i

_ (poc m 01\ [(m po\ " _
= (m pg) (1 0)_(p0 m)—puv +m=p+m.

The analogous sum for antiparticle spinors is

Z v(p, s)o(p,s) =p, ' —m=p—m. (45)

s



2 Charge conjugation

The basic idea is that a unitary operator C' turns particle creation operators a'(p, s,n)
for particles of kind n into creation operators af(p, s, n.) for antiparticles of kind n,

Cal(p,s,n)C™" = a,dl(p,s,n.) (46)
in which «,, is a phase factor. If we take the adjoint of both sides, we get

Ca(p,s,n)C~' = o a(p, s,n.). (47)
The corresponding relations for kind n, are

Ca(p,s,n.)C = ay,_a(p, s,n).

It will turn out that a,,, = .
The operation C' of charge conjugation turns the field

e / 32 Ja(p, 5,)e "7 + op, s)al (p,5,n)e™]  (49)

into

C(z)C™ = 9(x)

- J&

Dirac’s equation for a particle of charge e and mass m in an electromagnetic field
A, is

+
5 2 [ulp ) alp,me)e™ (0, 5)n 5,

(50)

(107" — eA " —m) Y(z) = 0. (51)

Its conjugate is
(=10 — A" —m) Y (z) =0 (52)

in which numbers are complex conjugated and operators are hermitian conjugated,
but vectors are not transposed. Since Dirac’s gamma matrices are defined by

{47} =29, (53)



the product (—7?)~? is the 4 x 4 identity matrix

(=) =1. (54)
So the conjugated form (52) of Dirac’s equation is equivalent to
¥ (—i0 " — eAt —m) (=) y*" (2) = 0. (55)

Schwartz’s gamma matrices
po (0 56

are hermitian except for 42 which is antihermitian. Thus their anticommutation
relations (53) imply

YA (=) = () = = (57)
So our conjugated Dirac equation (55) becomes
(107" + eA " —m) V2¢*(x) =0 (58)

which is Dirac’s equation for a particle of charge —e and mass m.
Thus we would like the image 1. of the field ¢ under the operation C' of charge
conjugation to be 1, = a~%9* in which « is a phase factor. The combination

ay?P*(z) is

3+
ay?Pt(r) = 0472/ (;lw};?) Z [u*(p, s)al (p, s, n)e™” + v*(p, s)a(p, s, nc)e "] (59)

while C¢(2)C~1 is from (50)

Pp < | ,
Cy(a)Ct = / ﬁ Z [ulp, )a, alp, s,n)e ™ + v(p, ), al (p, 5,n)e™]
(60)
Since the gamma matrices are real except for 42, which is imaginary, and since they

anticommute, one has
P = —yty2, (61)
Thus
. 1 o [a(E
= e (762)
(62)



And

0 0 0 —2 1 0
5 [a(+) 0 0 ¢ O 0 1 ( B(+)
’V(a(+)>(o i 0 0)(1)(0)2(5(+)>’ (63)
— 0 0 O 0 —1
vt (p, +) = iw(p, +). (64)
Similarly,
vut(p, =) = w(p, —). (65)
Also,
21}* 2 1 gk 6(:|:)
Y (p,s) = 2E 1 )( p)<—ﬁ(:|:)> .
2(E+ m) —B(£)
And
0 0 0 —2 0 1
o [ B(+) . 0O 0 ¢ O 1 N a(+)
7 (—6(+)) - (o i 0 0) (0) - (z) - <a(+)) (67)
— 0 0 O —1 0
Yo (p, +) = tulp, +) (68)
Similarly,
Y (p, —) = iu(p, —) (69)
Equivalently,
u(p, s) = —iy*v* (p, 5), v(p, s) = —iv*u*(p, s). (70)
Thus

Jr
Cy(a)C! = / 537 [t )05 a5, 400, ol ()]

e

+
Z (p, s)e, a(p, s,nc)e” " + u*(p, s)an, al(p, s,n)e™] .
(71)
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If & = a,,, then
C(x)C™ = .(z) = =iy, ¥*(z). (72)
The charge-conjugate field 1. will be the same as —iy?a, 1¥* only if

ay = Q. (73)

Thus the charge-conjugation phase factor «,, of a particle must be the complex
conjugate of the charge-conjugation phase factor «,,, of its antiparticle. Weinberg
shows further that unless a,, = o, , the fields ¢ (z) and ¢.(z) = C¥(z)C~" will not
anticommute at spacelike separations.

If ¥(x) is a spin-one-half field whose particles are the same as its antiparticles,
then the charge-conjugation phase factor a,, = a;, = «;, must be real and therefore
+1.

3 Parity

The basic idea is that a unitary operator P reverses the 3-momentum of particle
creation a'(p, s,n) and annihilation a(p, s,n) operators

Pa'(p,s,n) P~' = a, da'(Pp, s,n)

74
Pa(p,s,n) P~ = aj, (Pp,s,n) )

in which Pp = (p°, —p) and «, is a phase factor. The corresponding relations for the
antiparticles of kind n, are

Pal(p,s,n.) C™' = a,, a'(Pp, s, n,)

75
Calp,s,n.)Ct = ay,_a(Pp,s,ne). (75)

*

It will turn out that o, = —a.
Dirac’s equation for a particle of charge e and mass m in an electromagnetic field
A, is
(107" — eAy* —m) p(x) = 0. (76)

or more simply
(i@oﬂyo — iV T — €Ay’ +eAd -7 — m) P(x) =0. (77)
We insert (7°)? = I and multiply from the left by ~°:
7 (iaovo —iV -7 —edg® +ed 7 - m) 7% () = 0. (78)

12



Since

VI =7, (79)
this is . .
(2’8070 +iV -7 —ed —eAd -7 — m) e(x) = 0. (80)
Thus we would like the operation P of parity to turn the fields
+ .
Y(r) = / E Z ~P 4 u(p, s)b' (p, 5)e™”]
3 + (81)
Auw) = [ 55T eulpes)elp, ) + e, )el (p. )
u(x) = (270382_[5”]9,3 c(p, s)e £,(p,s)c'(p, s)e }
into
Pt )P = a0 (Px) = a0 (t, —7)
(82)

P <A0(t, 7), /T(t,f)) Pl = PA(Pz) = <A0(t, _7), —A(t, —f)) .

in which « is a phase factor.
Recalling the effect (74, 75) of the unitary parity operator P on the operators
a(p, s) and bf(p, s), we have with Pz = (t,—Z) and Pp = (p°, —p)

Bp <

Py(t,2)P~' = / ok Z [u(p, s)aka(Pp,s,n)e """ + v(p, s)ancaT(Pp,s,nc)eipﬂ

Bp < , |
/ Z Pp’ Oé a p78 n) —hee +U(vas>ancaT(p7 Sanc)elppx] .
(83)

Yet again, our spinors are

(84)
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So we see that

0 7 (m+py*) 1% (a(£)
Y u(p, %) N
2(E+m) a(+)
2(E+m) a(+)
(m + (Pp),7") (a(i))
= = U P ,:l:
2(E+m) \a(£) (Pp. %)
Also
0 (mr — m ~tt) A0~0
TN = puy) VY +
i, +) = L B0) <_B( jz )
2(E +m) B(+£)
(m + (Pp)y*) 7’ ( B(£)
(86)
2E+m) \—BE)
(m + (Pp)un") (—ﬁ(i))
= = —v(Pp,+).
2E+m) \ B(E) (Fp. %)
Thus we need o = —a,,. So for a Majorana fermion, «,, = =+i.
4 Time reversal
Time reversal is represented as an antilinear, antiunitary operator. That is,
(TOITY) = (@]0) = (¥]2) .
T(z|la) + wl|b)) = 2*T|a) + w*T|b).
On create and annihilation operators of type n, it is
TaT(ﬁv S, n>T71 = Bn(_l)jisaj(_ﬁ; —S, n) (88)
Ta(p,s,n)T~" = By(=1)'a(~p, —s,n).
On their antiparticle operators, it is
Ta' (P, s,n)T = B (1) %a’(—p, —s,n.) (39)
Ta(p,s,n.)T~" = B (1) "a(~p, —s,n)
in which j = 1/2 for spins-one-half fermions. On a Fermi field it is
Tt B)T" = =By * 7 P (—t, 7). (90)
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Thus we would like the operation T of time reversal to turn the field

Y(z) = / (ZW];?) SZ_ [u(p, s,n)a(p, s,n)e”"" +v(p,s,nc)a' (p, s,n.)e™"] (91)

into

Ty, )T~ = B vy " (—t, 7) (92)

in which ¢ is a phase factor. Recalling the effect (88-89) of T" on the creation and
annihilation operators, we find

T(t, 7T = /

n
/ Z DY2=5 [u*(p, s,n)Bla(—p, —s,n)eP

Z u(p, s,n)a(p, s,n)e” P + v(p,s,n.)al (p, Sa”c)eipﬂ T

+o* (p,S nc)ﬁnc H(—p, —s,n.)e "]
(93)
We now flip the sign of p'and of s
rue.ar = [ L I
| o 2 o o

+U*(_ﬁ7 -, nc)ﬂncaT (ﬁ? S, nc)eiip()tiiﬁf} .
So we must compute the effect of 4°v27° on the spinors of the particles:

5.2,.0 5.2 0 MEp [a(E
7”“@75”)—”7m(agi§)
SN i i it Uil (a

2E +m) \a

_sem "+ O(a
2(E+m)

5m—p070—]7-ﬁ’* 2 0<
2(E+m)
m+p+p- 7 5, o(a

T Erm ]
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The product of these gamma matrices is in Schwartz’s version of Weyl’s notation

5 2 0 -1 0 0 0'2 0 1
777_(0 1)\-¢> 0)\1 0

96
_ (-1 0\ [(o®> 0\ _ [(o* 0 (96)
- \0 1 0 —o?) 0 o%)°
Now
9 AW A AN
atn = (1) (o) =iat) (97
and
2 v (0 =i\ (0 _ .
cla(—) = (z 0 1) = io(+). (98)
So
. +p° Py a(+)
520u,i,n:m 52,0
VI up £ n) w7 e
_mAp Py <¢ia(¢)>
2E+m) \Fi(F) (99)
I o s e U (oz(qt))
20E+m) \aF)
= Fuu'(—p,F,n).
Thus
w' (=P, F,n) = £ir"y* u(p, £, n). (100)
The factor (—1)/27% cancels the sign 4, and so
(=12 (=5, F,n) = i7" u(p. £, n). (101)
Similarly, we compute the effect of v57?4° on the antiparticle spinors:
Ak +)
520018’71:5207”17#7 (ﬁ( )
Yy @ s,n) =7y 2 +m) \—B(F) 102)
— mA+p P T 5 s ( B(£) )
2(E +m) —B(%)
The product of these gamma matrices in Schwartz’s version of Weyl’s notation is
2
520_ _ [0 0
VYN == (0 02>- (103)

16



Now

M o= (0 () = (%) = =
So
200, £, ) = T ZZY;: E ) 240 <_ﬁ 5(2))
_mAp P (Wﬁ(ﬂF))
Q(E;ﬂgz) ) j@ﬁ(ﬂF)
-zl (o)
= F v (—p,F,n).
Thus,

V(=P F,n) = £y (D, £, n).

The factor (—1)/27* cancels the sign +, and so

(=120 (=p, F,n) = v’y (P, £, n).

So by (101 and 108), the effect (94) of 7" on 9 is

Tu(t, BT = / o Do [u (= B )

I nc)ﬁneaT(ﬁ, s,m)e” 77|

2757270/ 3 |: p,ﬂ: n (ﬁ,s,n)eip0t+iﬁf
(P +, nc)ﬁnca Fsne i),

The field TT ! will anticommute with ¢ at spacelike separations only if

6;; = Bnc

17
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(105)

(106)

(107)

(108)

(109)
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in which case

Jr
* ipOt+ip-@
Ty(t, 5T = if; ny“/ } j[ (B, £, n)a(F. 5,n)e?" 7

(111)
+o(p, £, ne)a’ (), 8, n)e t_”?"f] B2 Y (—t, 7)

which is (94) with ¢ = 4.
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